Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2401617, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713753

RESUMEN

DNA nanostructures exhibit versatile geometries and possess sophisticated capabilities not found in other nanomaterials. They serve as customizable nanoplatforms for orchestrating the spatial arrangement of molecular components, such as biomolecules, antibodies, or synthetic nanomaterials. This is achieved by incorporating oligonucleotides into the design of the nanostructure. In the realm of drug delivery to cancer cells, there is a growing interest in active targeting assays to enhance efficacy and selectivity. The active targeting approach involves a "key-lock" mechanism where the carrier, through its ligand, recognizes specific receptors on tumor cells, facilitating the release of drugs. Various DNA nanostructures, including DNA origami, Tetrahedral, nanoflower, cruciform, nanostar, nanocentipede, and nanococklebur, can traverse the lipid layer of the cell membrane, allowing cargo delivery to the nucleus. Aptamers, easily formed in vitro, are recognized for their targeted delivery capabilities due to their high selectivity for specific targets and low immunogenicity. This review provides a comprehensive overview of recent advancements in the formation and modification of aptamer-modified DNA nanostructures within drug delivery systems.

2.
ACS Biomater Sci Eng ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567981

RESUMEN

The groundbreaking gene-editing mechanism, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), paired with the protein Cas9, has significantly advanced the realms of biology, medicine, and agriculture. Through its precision in modifying genetic sequences, CRISPR holds the potential to alter the trajectory of genetic disorders and accelerate advancements in agriculture. While its therapeutic potential is profound, the technology also invites ethical debates centered on responsible use and equity in access. Parallelly, in the environmental monitoring sphere and sensing in water, especially biosensors have been instrumental in evaluating natural water sources' quality. These biosensors, integrating biological components with detection techniques, have the potential to revolutionize healthcare by providing rapid and minimally invasive diagnostic methods. However, the design and application of these sensors bring forth challenges, especially in ensuring sensitivity, selectivity, and ethical data handling. This article delves into the prospective use of CRISPR-Cas technology for sensing in water, exploring its capabilities in detecting diverse biomarkers, hazardous substances, and varied reactions in water and wastewater systems.

3.
ACS Omega ; 9(1): 1183-1195, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222665

RESUMEN

Biocompatible and bioactive carbon-based nanocomposites are ingeniously designed and fabricated with the aim of enhancing drug delivery applicability in breast cancer treatment. Reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) are utilized as nanocarriers for increasing penetrability into cells and the loading capacity. What sets our study apart is the strategic incorporation of the two different complexes of silver (AgL2) and palladium (PdL2) with the carboxamide-based ligand C9H7N3OS (L), which have been synthesized and decorated on nanocarriers alongside doxorubicin (DOX) for stabilizing DOX by π-π interactions and hydrogen bonding. Although DOX is a well-known cancer therapy agent, the efficacy of DOX is hindered owing to drug resistance, poor internalization, and limited site specificity. Aside from stabilizing DOX on nanocarriers, our carbon-based nanocarriers are tailored to act as a precision-guided missile, strategically by adorning with target-sensitive complexes. Based on the literature, carboxamide ligands can connect to overexpressed receptors on cancerous cells and inhibit them from proliferation signaling. Also, the complexes have an antibacterial activity that can control the infection caused by decreasing white blood cells and necrosis of cancerous cells. A high-concentration cytotoxicity assay revealed that decorating PdL2 on a DOX-containing nanocarrier not only increased cytotoxicity to breast cancerous cell lines (MDA-MB-231 and MCF-7) but also revealed higher cell viability on a normal cell line (MCF-10A). The drug release screening results showed that the presence of PdL2 led to 72 h correlate release behavior in acidic and physiological pH profiles, while the AgL2-containing nanocomposite showed an analogue behavior for just 6 h and the release of DOX continued and after about 100 h hit the top.

4.
ACS Biomater Sci Eng ; 10(2): 657-676, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38241520

RESUMEN

The fusion of MXene-based materials with microfluidics not only presents a dynamic and promising avenue for innovation but also opens up new possibilities across various scientific and technological domains. This Perspective delves into the intricate synergy between MXenes and microfluidics, underscoring their collective potential in material science, sensing, energy storage, and biomedical research. This intersection of disciplines anticipates future advancements in MXene synthesis and functionalization as well as progress in advanced sensing technologies, energy storage solutions, environmental applications, and biomedical breakthroughs. Crucially, the manufacturing and commercialization of MXene-based microfluidic devices, coupled with interdisciplinary collaborations, stand as pivotal considerations. Envisioning a future where MXenes and microfluidics collaboratively shape our technological landscape, addressing intricate challenges and propelling innovation forward necessitates a thoughtful approach. This viewpoint provides a comprehensive assessment of the current state of the field while outlining future prospects for the integration of MXene-based entities and microfluidics.


Asunto(s)
Microfluídica , Nitritos , Elementos de Transición
5.
ACS Biomater Sci Eng ; 9(12): 6516-6530, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38019724

RESUMEN

MXene materials, which consist of nitrides, carbides, or carbonitrides of transition metals, possess a distinctive multilayered structure resulting from the specific etching of the "A" layer from MAX phase precursors. This unique structure allows for tunable properties through intercalation and surface modification. Beyond their structural novelty, MXenes exhibit exceptional thermal conductivity, mechanical resilience, and versatile surface functionalization capabilities, rendering them highly versatile for a wide range of applications. They are particularly renowned for their multifaceted utility and are emerging as outstanding candidates in applications requiring robust thermal conductivity. MXenes, when integrated into textile, fiber, and film forms, have gained increasing relevance in fields where efficient heat management is essential. This work provides a comprehensive exploration of MXene materials, delving into their inherent structure and thermal properties. This Perspective places particular emphasis on their crucial role in efficient heat dissipation, which is vital for the development of wearable heaters and related technologies. Engineered compounds such as MXenes have become indispensable for personal and industrial heating applications, and the advancement of wearable electronic devices necessitates heaters with specific properties, including transparency, mechanical reliability, and adaptability. Recent advancements in emergent thermally conductive MXene compounds are discussed in this study, shedding light on their potential contributions across various domains, including wearable heaters and biosensors for healthcare and environmental monitoring. Furthermore, the versatile nature of MXene materials extends to their application in interfacial solar steam generation, representing a breakthrough approach for solar water desalination. This multifaceted utility underscores the vast potential of MXenes in addressing various pressing challenges.


Asunto(s)
Nitritos , Reproducibilidad de los Resultados
6.
Crit Rev Biotechnol ; : 1-32, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37442771

RESUMEN

3D bioprinting is an advanced technology combining cells and bioactive molecules within a single bioscaffold; however, this scaffold cannot change, modify or grow in response to a dynamic implemented environment. Lately, a new era of smart polymers and hydrogels has emerged, which can add another dimension, e.g., time to 3D bioprinting, to address some of the current approaches' limitations. This concept is indicated as 4D bioprinting. This approach may assist in fabricating tissue-like structures with a configuration and function that mimic the natural tissue. These scaffolds can change and reform as the tissue are transformed with the potential of specific drug or biomolecules released for various biomedical applications, such as biosensing, wound healing, soft robotics, drug delivery, and tissue engineering, though 4D bioprinting is still in its early stages and more works are required to advance it. In this review article, the critical challenge in the field of 4D bioprinting and transformations from 3D bioprinting to 4D phases is reviewed. Also, the mechanistic aspects from the chemistry and material science point of view are discussed too.

8.
J Gene Med ; 24(12): e3458, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36279107

RESUMEN

The overall success in launching discovered drugs is tightly restricted to the high rate of late-stage failures, which ultimately inhibits the distribution of medicines in markets. As a result, it is imperative that methods reliably predict the effectiveness and, more critically, the toxicity of medicine early in the drug development process before clinical trials be continuously innovated. We must stay up to date with the fast appearance of new infections and diseases by rapidly developing the requisite vaccinations and medicines. Modern in vitro models of disease may be used as an alternative to traditional disease models, and advanced technology can be used for the creation of pharmaceuticals as well as cells, drugs, and gene delivery systems to expedite the drug discovery procedure. Furthermore, in vitro models that mimic the spatial and chemical characteristics of native tissues, such as a 3D bioprinting system or other technologies, have proven to be more effective for drug screening than traditional 2D models. Viral and non-viral gene delivery vectors are a hopeful tool for combinatorial gene therapy, suggesting a quick way of simultaneously deliver multiple genes. A 3D bioprinting system embraces an excellent potential for gene delivery into the different cells or tissues for different diseases, in tissue engineering and regeneration medicine, in which the precise nucleic acid is located in the 3D printed tissues and scaffolds. Non-viral nanocarriers, in combination with 3D printed scaffolds, are applied to their delivery of genes and controlled release properties. There remains, however, a big obstacle in reaching the full potential of 3D models because of a lack of in vitro manufacturing of live tissues. Bioprinting advancements have made it possible to create biomimetic constructions that may be used in various drug discovery research applications. 3D bioprinting also benefits vaccinations, medicines, and relevant delivery methods because of its flexibility and adaptability. This review discusses the potential of 3D bioprinting technologies for pharmaceutical studies.


Asunto(s)
Terapia Genética
9.
Sci Rep ; 12(1): 15351, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097028

RESUMEN

Nanotechnology is one of the most impressive sciences in the twenty-first century. Not surprisingly, nanoparticles/nanomaterials have been widely deployed given their multifunctional attributes and ease of preparation via environmentally friendly, cost-effective, and simple methods. Although there are assorted optimized preparative methods for synthesizing the nanoparticles, the main challenge is to find a comprehensive method that has multifaceted properties. The goal of this study has been to synthesize aminated (nano)particles via the Rosmarinus officinalis leaf extract-mediated copper oxide; this modification leads to the preparation of (nano)particles with promising biological and photocatalytic applications. The synthesized NPs have been fully characterized, and biological activity was evaluated in antibacterial assessment against Bacillus cereus as a model Gram-positive and Pseudomonas aeruginosa as a model Gram-negative bacterium. The bio-synthesized copper oxide (nano)particles were screened by MTT assay by applying the HEK-293 cell line. The aminated (nano)particles have shown lower cytotoxicity (~ 21%), higher (~ 50%) antibacterial activity, and a considerable increase in zeta potential value (~ + 13.4 mV). The prepared (nano)particles also revealed considerable photocatalytic activity compared to other studies wherein the dye degradation process attained 97.4% promising efficiency in only 80 min and just 7% degradation after 80 min under dark conditions. The biosynthesized copper oxide (CuO) (nano)particle's biomedical investigation underscores an eco-friendly synthesis of (nano)particles, their noticeable stability in the green reaction media, and impressive biological activity.


Asunto(s)
Cobre , Nanopartículas del Metal , Aminación , Antibacterianos/metabolismo , Antibacterianos/farmacología , Bioingeniería , Cobre/farmacología , Células HEK293 , Humanos , Óxidos , Porosidad
10.
Sci Rep ; 12(1): 12105, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840687

RESUMEN

The aim of this work was to provide a novel approach to designing and synthesizing a nanocomposite with significant biocompatibility, biodegradability, and stability in biological microenvironments. Hence, the porous ultra-low-density materials, metal-organic frameworks (MOFs), have been considered and the MIL-125(Ti) has been chosen due to its distinctive characteristics such as great biocompatibility and good biodegradability immobilized on the surface of the reduced graphene oxide (rGO). Based on the results, the presence of transition metal complexes next to the drug not only can reinforce the stability of the drug on the structure by preparing π-π interaction between ligands and the drug but also can enhance the efficiency of the drug by preventing the spontaneous release. The effect of utilizing transition metal complex beside drug (Doxorubicin (DOX)) on the drug loading, drug release, and antibacterial activity of prepared nanocomposites on the P. aeruginosa and S. aureus as a model bacterium has been investigated and the results revealed that this theory leads to increasing about 200% in antibacterial activity. In addition, uptake, the release of the drug, and relative cell viabilities (in vitro and in vivo) of prepared nanomaterials and biomaterials have been discussed. Based on collected data, the median size of prepared nanocomposites was 156.2 nm, and their biological stability in PBS and DMEM + 10% FBS was screened and revealed that after 2.880 min, the nanocomposite's size reached 242.3 and 516 nm respectively. The MTT results demonstrated that immobilizing PdL beside DOX leads to an increase of more than 15% in the cell viability. It is noticeable that the AST:ALT result of prepared nanocomposite was under 1.5.


Asunto(s)
Nanocompuestos , Paladio , Antibacterianos/química , Antibacterianos/farmacología , Doxorrubicina/química , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Nanocompuestos/química , Paladio/farmacología , Pseudomonas aeruginosa , Staphylococcus aureus
11.
Biomolecules ; 11(11)2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34827712

RESUMEN

Metal-organic frameworks (MOFs) have been widely used as porous nanomaterials for different applications ranging from industrial to biomedicals. An unpredictable one-pot method is introduced to synthesize NH2-MIL-53 assisted by high-gravity in a greener media for the first time. Then, porphyrins were deployed to adorn the surface of MOF to increase the sensitivity of the prepared nanocomposite to the genetic materials and in-situ cellular protein structures. The hydrogen bond formation between genetic domains and the porphyrin' nitrogen as well as the surface hydroxyl groups is equally probable and could be considered a milestone in chemical physics and physical chemistry for biomedical applications. In this context, the role of incorporating different forms of porphyrins, their relationship with the final surface morphology, and their drug/gene loading efficiency were investigated to provide a predictable pattern in regard to the previous works. The conceptual phenomenon was optimized to increase the interactions between the biomolecules and the substrate by reaching the limit of detection to 10 pM for the Anti-cas9 protein, 20 pM for the single-stranded DNA (ssDNA), below 10 pM for the single guide RNA (sgRNA) and also around 10 nM for recombinant SARS-CoV-2 spike antigen. Also, the MTT assay showed acceptable relative cell viability of more than 85% in most cases, even by increasing the dose of the prepared nanostructures.


Asunto(s)
COVID-19/diagnóstico , Estructuras Metalorgánicas/química , Porfirinas/química , Animales , Prueba de COVID-19 , Sistemas CRISPR-Cas , ADN de Cadena Simple , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Enlace de Hidrógeno , Límite de Detección , Nanocompuestos , Nanoestructuras , Nitrógeno/química , Células PC12 , Porosidad , ARN Guía de Kinetoplastida , ARN Viral/metabolismo , Ratas , SARS-CoV-2 , Sensibilidad y Especificidad , Propiedades de Superficie
12.
Sci Rep ; 11(1): 6604, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758300

RESUMEN

Herein, in a one-pot method, the reduced graphene oxide layers with the assistance of multiwalled carbon nanotubes were decorated to provide a suitable space for the in situ growth of CoNi2S4, and the porphyrins were incorporated into the layers as well to increase the sensitivity of the prepared nanostructure. The prepared nanocomposite can establish π-π interactions between the genetic material and on the surface of porphyrin rings. Also, hydrogen bonds between genetic domains and the porphyrin' nitrogen and the surface hydroxyl groups are probable. Furthermore, the potential donor-acceptor relationship between the d7 transition metal, cobalt, and the genetic material provides a suitable way to increase the interaction and gene loading , and transfections. The reason for this phenomenon was optimized to increase the EGFP by up to 17.9%. Furthermore, the sensing ability of the nanocomposite towards H2O2 was investigated. In this regard, the limit of detection of the H2O2 obtained 10 µM. Also, the in situ biosensing ability in the HEK-293 and PC12 cell lines was evaluated by the addition of PMA. The nanocomposite showed the ability to detect the released H2O2 after adding the minimum amount of 120 ng/mL of the PMA.

13.
Int J Nanomedicine ; 15: 4237-4256, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32606675

RESUMEN

With the passage of time and more advanced societies, there is a greater emergence and incidence of disease and necessity for improved treatments. In this respect, nowadays, aptamers, with their better efficiency at diagnosing and treating diseases than antibodies, are at the center of attention. Here, in this review, we first investigate aptamer function in various fields (such as the detection and remedy of pathogens, modification of nanoparticles, antibiotic delivery and gene delivery). Then, we present aptamer-conjugated nanocomplexes as the main and efficient factor in gene delivery. Finally, we focus on the targeted co-delivery of genes and drugs by nanocomplexes, as a new exciting approach for cancer treatment in the decades ahead to meet our growing societal needs.


Asunto(s)
Antibacterianos/farmacología , Aptámeros de Nucleótidos/química , Técnicas de Transferencia de Gen , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Humanos , Nanopartículas/ultraestructura , Polietileneimina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...